Academic Programs & Majors

Program Requirements

As one of the broadest engineering disciplines, Mechanical Engineering offers pathways into a wide variety of careers. Consequently, the program requirements expose students to the many options they will have within the field through diverse courses. This breadth is coupled with the required depth to build marketable skills expected on your resume by designing flexibility into each class for students to more deeply pursue their specific interests through projects and independent study. Required directed research and an internship further develop these valuable skills.

Major Requirements

57 major sh
120 total credits for graduation

Minor Requirements:

20 semester hours

Academic Catalog  Core Curriculum

Search for Courses

Course Descriptions

The following descriptions are a sample of courses you may take as a mechanical engineering major. For a complete list of required courses, please review the academic catalog.

This course is the first semester of a calculus-based introductory physics course for engineering and science majors. Topics to be covered include kinematics, dynamics, energy and momentum, rotational motion, gravitation, equilibria, properties of materials, fluids, wave motion, sound, and simple harmonic oscillations. Emphasis will be placed on problem solving skills as well as conceptual understanding of the material. Lab is included in this course.


This course is the second semester of a calculus-based introductory physics course for engineering and science majors. Topics to be covered include thermodynamics, electrical fields and forces, electric potential, DC circuits, magnetic fields and forces, AC circuits, geometrical and physical optics, quantum theory, atomic theory and structure, and nuclear structure, decay, and reactions. Emphasis will be placed on problem solving skills as well as conceptual understanding of the material. Lab is included in this course.


This course is an introduction to a variety of practical, real-world tools used in physics and engineering to solve problems and complete projects. This course includes an introduction to (1) sketching and visual representation for mechanical and product design, (b) the function of common mechanisms, (3) fabrication methods and prototyping and production, and (d) technical drawing and computer-aided modeling.


This course is an introduction to the engineering design process. Come learn by doing, diving into communities to get to know stakeholders and identifying what can be improved. Iterate solutions while balancing constraints and leveraging opportunity. Bring a project through a typical design cycle (e.g., needs identification, concept development, prototyping, testing, iteration).


Moral values permeate all aspects of technological development. Ethics and excellence go together. This course is an introduction to ethics in the context of the engineering profession. The course will include a discussion of current accepted moral frameworks and ethical theories; the study of decision, policies and values involved in engineering practice; and the responsibilities and rights endorsed by the engineering community. Through a critical reading of the Engineering Code of Ethics, traditional textbooks and the consideration of case studies in engineering the class will explore moral challenges faced by engineers in today's society.




This course offers a theoretical and practical introduction to DC and AC circuits. Topics covered include: analysis of linear circuits, circuit laws and theorems, DC responses of circuits; operational amplifies characteristics and applications, sinusoidal steady-state analysis and phasors, and sinusoidal steady-state power calculations. Emphasis will be placed on both the mathematical methods as well as the "rules of thumb" used in everyday laboratory settings.


This course is the lab to accompany PHEN 2510. Students will gain practical experience in building electronic circuits and using electrical measuring devices with an eye toward laboratory application. Co-requisite: PHEN 2510 (required).


This course seeks to investigate how the unifying concepts of atomic theory can lead to an understanding of the observed behavior of macroscopic systems, how quantities describing the directly measurable properties of such systems are interrelated, and how these quantities can be deduced from a knowledge of atomic characteristics. Topics to be covered include properties of equilibria, heat and temperature, statistical ensembles, probability, specification of the state of a system, thermal interaction, work, internal energy, entropy, Maxwell distribution, equipartition theorem, applications to an ideal gas, phases, thermal conductivity, and transport of energy. There is no lab for this course.


This class will include determination of stresses, deflections, and stability of deformable bodies. Topics covered include statically indeterminate problems in axially loaded bars; normal shear stress in symmetrically loaded beams; normal and shear stress in unsymmetrically loaded beams; deflections in beams and statically indeterminate beam problems; structural analysis using energy methods; stability of columns and allowable loads.


This course is the study of objects in motion. Topics include particle kinematics and kinetics; work, energy, momentum and impulse applied to systems of particle and rigid bodies.


How are heat, mass and momentum transported? This course addresses these transport phenomena by cover topics in fluid dynamics such as kinematics, conservation laws, dynamic similarity, and laminar flow solutions. Topics in heat and mass transfer cover internal and external convection, free convection, boiling and condensation, and the analogy between heat and mass transport. Analytical and computational modeling of these processes are simultaneously used. Lab is included in this course.


This course is intended to help students begin to make the transition from student to professional. The course will have three main goals: 1) to help students examine their goals as they enter graduate school or the private sector; 2) to help students prepare for the departmental comprehensive exam; and 3) to begin to familiarize students with the literature in their field of study.


In PHEN 1410, students examined how we acquire knowledge and gain understanding about our world. In this course students examine the interface between knowledge and practice. Using their experience and information from their undergraduate courses students will examine the point at which physics research becomes truth. Students will examine how society affects research and how physics becomes part of society. This course will include a brief overview of anthropology and sociology of physics. The social construction of knowledge and the anthropology of the laboratory are examples of topics to be considered. Students will particularly focus on science ethics, security issues, and the role of the scientist in forming policy.


Students will work under the direction of a faculty mentor on a novel research project. Permission of the faculty mentor is required prior to enrollment in this course. This course may be repeated, though the department may limit the number of credit hours this course counts towards the major. Please see the departmental degree requirements for details.


Please refer to internship section of the catalog for requirements and guidelines


Beginning calculus, limits and continuity, derivatives, mean value theorem, applications of derivatives, antiderivatives, Riemann Sums, introduction to the definite integrals. Uses computers.


Continuation of MATH 1510. Fundamental theorem of calculus, evaluation of definite integrals, applications of definite integrals, introduction to differential equations, infinite sequences and series. Uses computers.


Study of ordinary differential equations, especially first and second order, with applications to geometry and the physical life sciences. Uses computers.


A detailed study of functions of several variables including differentiation, line and surface integrals, and Green and Stokes' theorems. Uses computers.


A study of matrices, vector spaces, linear transformations, orthogonality, eigenvalues, and eigenvectors. Uses computers.


A presentation of the basic laws of chemistry with emphasis on stoichiometry, atomic and electronic structure, bonding, and the states of matter(gas, liquid, solid, and solution). Properties and reactions of some elements and simple compounds are used to exemplify the principles. Chemistry I and II form a year's sequential study of the principles of chemistry with applications describing elements and compounds and their reactions. This sequence meets the needs of students majoring in the physical and biological sciences. Four hours lecture and two hours laboratory per week. Prerequisite: MATH placement above 1010 or co-requisite MATH 1010.